AMERICAN UNIVERSITY OF BEIRUT ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT EECE 340
 Homework 1 - Solution

Problem 1

Determine whether the following signal is periodic. If it is periodic, find its period.

$$
x(t)=\sin \left(\frac{5}{13} \pi^{2} t\right)
$$

$\mathrm{x}(\mathrm{t})$ is periodic with a period $\mathrm{T}=26 / 5 \pi$ seconds

Problem 2

Determine whether or not the following signal $f(t)=4 u(t)+2 \sin (3 t)$ is periodic. If the signal is periodic, determine its fundamental period.
The signal $f(t)$ is not periodic
Reason: $\mathrm{u}(\mathrm{t})$ is not a periodic signal

Problem 3

Determine whether or not each of the following signals is periodic. If the signal is periodic, determine its fundamental period.
a) $x(t)=\left[\cos \left(\frac{\pi}{3} t-\pi\right)\right]^{3}$
$\mathrm{X}(\mathrm{t})$ is periodic with a period $\mathrm{T}=6$ seconds
b) $x(t)=\cos \left(\frac{\pi}{3} t\right)+\sin \left(\frac{3 \pi}{4} t-\pi\right)$

The cosine function is periodic with a period $\mathrm{T}=6$ seconds. The sine function is also periodic with a period $\mathrm{T}=8 / 3$ seconds. $\mathrm{X}(\mathrm{t})$ is also periodic with a period of 24 seconds

Problem 4

Consider the periodic signal $\mathrm{x}(\mathrm{t})$ given by the expression

$$
x(t)=(2+2 j) e^{-j 3 t}-3 \mathrm{je}^{-\mathrm{j} 2 t}+5+3 \mathrm{je}^{\mathrm{j} 2 \mathrm{t}}+(2-2 \mathrm{j}) \mathrm{e}^{\mathrm{j} 3 \mathrm{t}}
$$

Determine the period of $\mathrm{x}(\mathrm{t})$ and its fundamental frequency.

$$
T=2 \pi \text { seconds, } \omega_{0}=1 \mathrm{rad} / \mathrm{s}
$$

Problem 5

a. Consider the everlasting signal $X(t)=e^{-a t}$. Is $\mathrm{X}(\mathrm{t})$ an energy signal?

$$
E=\int_{-\infty}^{\infty} x^{2}(t) d t=\infty \text {, therefore } X(t) \text { is not an energy signal. }
$$

b. For which values of "a" $\mathrm{X}(\mathrm{t})$ is a power signal? Determine its average power. $X(t)$ is a power signal if a is a complex quantity. In this case $P_{a v}=1$ Watt.

Problem 6

Classify these signals into energy-type signals, power-type signals, and signals that are neither energy type nor power type signals. For energy-type and power-type signals, find the energy or the power content of the signals
a. $f(t)=4 e^{j 2 \pi f_{0}}+3 e^{j\left(2 \pi f_{1}+\theta\right)}$

Solution: Each of the above signal is periodic. Each is a power signal, therefore $f(t)$ is a power signal if the sum is periodic. Average power $=16+9=25$ Watts
b. $f(x)=e^{-2|t|}$

Solution: The above signal is an energy signal as most of the energy is concentrated within a finite period of time.

$$
E=2 \int_{0}^{\infty} e^{-t} d t=2 \text { Joules }
$$

Problem 7

Categorize each of the following signals as an energy signal or a power signal. Sate the reason for your answer.
(a) The continuous-time signal $x(t)$, defined by

$$
x(t)= \begin{cases}3 e^{-2 t}, & t \geq 0, \\ 0, & \text { otherwise } .\end{cases}
$$

E is finite. Energy Signal
(b) The continuous-time signal $\mathrm{z}(\mathrm{t})$, defined for $-\infty<\mathrm{t}<\infty$ by

$$
\mathrm{z}(\mathrm{t})=3 \sin (\pi \mathrm{t})+2 \cos (3 \pi \mathrm{t})
$$

Periodic. Power Signal
(c)

None

Problem 8

Consider the signal shown below

a. What is the total energy of the signal $x(t)$

The total energy is given by:

$$
\mathrm{E}=\int_{-\infty}^{+\infty}|\mathrm{f}(\mathrm{t})|^{2} \mathrm{dt}=\int_{-T_{1}}^{\mathrm{T}_{1}} \mathrm{~A}^{2} \mathrm{dt}=2 \mathrm{~A}^{2} \mathrm{~T}_{1} \text { Joules }
$$

b. What is the time-averaged power of the signal $\mathrm{x}(\mathrm{t})$

The time-averaged power is given by:

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T_{1} / 2}^{T_{1} / 2}|f(t)|^{2} d t=0
$$

Problem 9

Consider the signal shown below

$$
x(t)=\left\{\begin{array}{cc}
\frac{1}{\sqrt{t}} & t>1 \\
0 & t \leq 1
\end{array}\right\}
$$

a. Determine the total energy of this signal. Is $\mathrm{x}(\mathrm{t})$ an Energy Signal?
$E=\int_{1}^{\infty} \frac{1}{t} d t=\infty$
$\mathrm{X}(\mathrm{t})$ is not an energy signal
b. Determine the average power of this signal. Is $\mathrm{x}(\mathrm{t})$ a power signal.
$P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-t / 2}^{T / 2} \frac{1}{t} d t=$ does not exist. $\mathrm{X}(\mathrm{t})$ is not a power signal.

Problem 10

A continuous-time signal $g(t)$ is defined as:

$$
g(t)=\left\{\begin{array}{cc}
12 \cos ^{2}(2 \pi t), & -8<t<31 \\
0, & \text { elsewhere }
\end{array}\right.
$$

a. Is $g(t)$ an energy signal? Show your work. $g(t)$ is an energy signal as it is a finite duration signal.
b. Is $g(t)$ a power signal? Show your work. $g(t)$ is not a power signal as it cannot be both energy and power.

